Large Current External FET Controller Type Switching Regulator Dual-output, high voltage, high-efficiency step-down Switching Regulator (Controller type) BD9011EKN , BD9011KV , BD9775FV

-Overview

The BD9011EKN/KV is a 2-ch synchronous controller with rectification switching for enhanced power management efficiency. It supports a wide input range, enabling low power consumption ecodesign for an array of electronics.

- Features

1) Wide input voltage range: 3.9 V to 30 V
2) Precision voltage references: $0.8 \mathrm{~V} \pm 1 \%$
3) FET direct drive
4) Rectification switching for increased efficiency
5) Variable frequency: 250 k to 550 kHz (external synchronization to 550 kHz)
6) Built-in selected OFF latch and auto remove over current protection
7) Built-in independent power up/power down sequencing control
8) Make various application, step-down, step-up and step-up-down
9) Small footprint packages: HQFN36V, VQFP48C

- Applications

Car audio and navigation systems, CRTTV, LCDTV, PDPTV, STB, DVD, and PC systems, portable CD and DVD players, etc.

- Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit	Parameter	Symbol	Rating	Unit
EXTVCC Voltage	EXTVCC	$34 * 1$	V	COMP1,2 Voltage	COMP1,2	VREG5	V
VCCCL1,2 Voltage	VCCCL1,2	$34 * 1$	V	DET1,2 Voltage	DET1,2		
CL1,2 Voltage	CL1,2	34	V	RT, SYNC Voltage	RT, SYNC		
SW1,2 Voltage	SW1,2	$34 * 1$	V	Power Dissipation	Pd	$\begin{gathered} 0.875{ }^{* 2} \\ (\text { HQFN36V) } \end{gathered}$	W
BOOT1,2 Voltage	BOOT1,2	40 *1	V				
BOOT1,2-SW1,2 Voltage	BOOT1,2-SW1,2	$7^{* 1}$	V			$\begin{gathered} 1.1^{* 2} \\ \text { (VQFP48C) } \end{gathered}$	W
STB, EN1,2 Voltage	STB, EN1,2	VCC	V				
VREG5,5A	VREG5,5A	7	V	Operating temperature	Topr	-40 to +105	${ }^{\circ} \mathrm{C}$
VREG33	VREG33	VREG5	V	Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$
SS1,2, FB1,2	SS1,2, FB1,2	VREG5	V	Junction temperature	Tj	+150	${ }^{\circ} \mathrm{C}$

[^0]- Operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Input voltage 1	EXTVCC	$3.9^{* 1}{ }^{2}$	12	30	V
Input voltage 2	VCC	$3.9^{* 1}{ }^{\circ 2}$	12	30	V
BOOT-SW voltage	BOOT-SW	4.5	5	VREG5	V
Carrier frequency	OSC	250	300	550	kHz
Synchronous frequency	SYNC	OSC	-	550	kHz
Synchronous pulse duty	Duty	40	50	60	$\%$
Min OFF pulse	TMIN	-	100	-	nsec

\star This product is not designed to provide resistance against radiation.
*1 After more than 4.5 V , voltage range.
*2 In case of using less than 6V, Short to VCC, EXTVCC and VREG5.

- Electrical characteristics (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ VCC=12V STB=5V EN1,2=5V)

Parameter	Symbol	Limit			Unit	Conditions
		Min.	Typ.	Max.		
VIN bias current	IIN	-	5	10	mA	
Shutdown mode current	IST	-	0	10	$\mu \mathrm{A}$	VSTB $=0 \mathrm{~V}$
[Error Amp Block]						
Feedback reference voltage	VOB	0.792	0.800	0.808	V	
Feedback reference voltage ($\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$)	VOB+	0.784	0.800	0.816	V	Ta=-40 to $105^{\circ} \mathrm{C}$ ※
Open circuit voltage gain	Averr	-	46	-	dB	
VO input bias current	IVo+	-	-	1	$\mu \mathrm{A}$	
[FET Driver Block]						
HG high side ON resistance	HGhon	-	1.5	-	Ω	
HG low side ON resistance	HGlon	-	1.0	-	Ω	
LG high side ON resistance	LGhon	-	1.5	-	Ω	
LG low side ON resistance	LGlon	-	0.5	-	Ω	
[Oscillator]						
Carrier frequency	FOSC	270	300	330	kHz	$\mathrm{RT}=100 \mathrm{k} \Omega$
Synchronous frequency	Fsync	-	500	-	kHz	$\mathrm{RT}=100 \mathrm{k} \Omega, \mathrm{SYNC}=500 \mathrm{kHz}$
[Over Current Protection Block]						
CL threshold voltage	Vswth	70	90	110	mV	
CL threshold voltage ($\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$)	Vswth+	67	90	113	mV	Ta=-40 to $105^{\circ} \mathrm{C}$ ※
[VREG Block]						
VREG5 output voltage	VREG5	4.8	5	5.2	V	IREF $=6 \mathrm{~mA}$
VREG33 reference voltage	VREG33	3.0	3.3	3.6	V	IREG $=6 \mathrm{~mA}$
VREG5 threshold voltage	VREG_UVLO	2.6	2.8	3.0	V	VREG:Sweep down
VREG5 hysteresis voltage	DVREG_UVLO	50	100	200	mV	VREG:Sweep up
[Soft start block]						
Charge current	ISS	6.5	10	13.5	$\mu \mathrm{A}$	VSS=1V
Charge current ($\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$)	ISS+	6	10	14	$\mu \mathrm{A}$	VSS $=1 \mathrm{~V}, \mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$ ※

Note: Not all shipped products are subject to outgoing inspection.

Fig. 1 Efficiency 1

Fig. 4 Reference voltage vs. temperature characteristics

Fig. 7 Internal Reg vs. temperature characteristics

Fig. 10 EN threshold voltage

Fig. 2 Efficiency 2

Fig. 5 Over current detection vs. temperature characteristics

Fig. 8 Line regulation

Fig. 11 Load transient response 1

Fig. 3 Circuit current

Fig. 6 Frequency vs. temperature characteristics

Fig. 9 Load regulation

Fig. 12 Load transient response 2
-Block diagram (Parentheses indicate VQFP48C pin numbers)

Fig-13

Pin configuration
BD9011EKN (HQFN36V)

Fig-14
-PIN function table

Pin No.	Pin name	Function
1	SW1	High side FET source pin 1
2	DGND1	Low side FET source pin 1
3	OUTL1	Low side FET gate drive pin 1
4	VREG5A	FET drive REG input
5	VREG33	Reference input REG output
6	FB1	Error amp input 1
7	COMP1	Error amp output 1
8	SS1	Soft start setting pin 1
9	DET1	FB detector output 1
10	STB	Standby ON/OFF pin
11	EN1	Output 10N/OFF pin
12	EN2	Output 2ON/OFFpin
13	GND	Ground
14	LOFF	Over current protection OFF latch function ON/OFF pin
15	RT	Switching frequency setting pin
16	SYNC	External synchronous pulse input pin
17	LLM	Built-in pull-down resistor pin
18	DET2	FB detector output 2
19	SS2	Soft start setting pin 2
20	COMP2	Error amp output 2
21	FB2	Error amp input 2
22	EXTVCC	External power input pin
23	-	N.C.
24	VREG5	FET drive REG output
25	OUTL2	Low side FET gate drive pin 2
26	DGND2	Low side FET source pin 2
27	SW2	High side FET source pin 2
28	OUTH2	Hi side FET gate drive pin 2
29	BOOT2	OUTH2 driver power pin
30	CL2	Over current detector setting pin 2
31	VCCCL2	Over current detection VCC2
32	VCC	Input power pin
33	VCCCL1	Over current detection VCC1
34	CL1	Over current detector setting pin 1
35	BOOT1	OUTH1 driver power pin
36	OUTH1	High side FET gate drive pin 1

-Pin configuration
BD9011KV (VQFP48C)

Fig-15
-Pin function table

Pin No.	Pin name	Function
1	OUTH2	High side FET gate drive pin 2
2	BOOT2	OUTH2 driver power pin
3	CL2	Over current detection pin 2
4	N.C	Non-connect (unused) pin
5	VCCCL2	Over current detection VCC2
6	N.C	Non-connect (unused) pin
7	VCC	Input power pin
8	VCCCL1	Over current detection CC1
9	N.C	Non-connect (unused) pin
10	CL1	Over current detection setting pin 1
11	BOOT1	OUTH1 driver power pin
12	OUTH1	High side FET gate drive pin 1
13	SW1	High side FET source pin 1
14	DGND1	Low side FET source pin 1
15	OUTL1	Low side FET gate drive pin 1
16	N.C	Non-connect (unused) pin
17	VREG5A	FET drive REG input
18	N.C	Non-connect (unused) pin
19	VREG33	Reference input REG output
20	N.C	Non-connect (unused) pin
21	FB1	Error amp input 1
22	COMP1	Error amp output 1
23	SS1	Soft start setting pin 1
24	DET1	FB detector output 1
25	STB	Standby ON/OFF pin
26	EN1	Output 1 ON/OFF pin
27	EN2	Output 2 ON/OFF pin
28	N.C	Non-connect (unused) pin
29	GND	Ground
30	GNDS	Sense ground
31	LOFF	Over current protection OFF latch function ON/OFF pin
32	N.C	Non-connect (unused) pin
33	RT	Switching frequency setting pin
34	SYNC	External synchronous pulse input pin
35	LLM	Built-in pull-down resistor pin
36	DET2	FB detector output 2
37	SS2	Soft start setting pin 2
38	COMP2	Error amp output 2
39	FB2	Error amp input 2
40	N.C	Non-connect (unused) pin
41	EXTVCC	External power input pin
42	N.C	Non-connect (unused) pin
43	N.C	Non-connect (unused) pin
44	VREG5	FET drive REG output
45	N.C	Non-connect (unused) pin
46	OUTL2	Low side FET gate drive pin 2
47	DGND2	Low side FET source pin 2
48	SW2	High side FET source pin 2

-Block functional descriptions

- Error amp

The error amp compares output feedback voltage to the 0.8 V reference voltage and provides the comparison result as COMP voltage, which is used to determine the switching Duty. COMP voltage is limited to the SS voltage, since soft start at power up is based on SS pin voltage.

- Oscillator (OSC)

Oscillation frequency is determined by the switching frequency pin (RT) in this block. The frequency can be set between 250 kHz and 550 kHz .

- SLOPE

The SLOPE block uses the clock produced by the oscillator to generate a triangular wave, and sends the wave to the PWM comparator.

- PWM COMP

The PWM comparator determines switching Duty by comparing the COMP voltage, output from the error amp, with the triangular wave from the SLOPE block. Switching duty is limited to a percentage of the internal maximum duty, and thus cannot be 100% of the maximum.

- Reference voltage (5Vreg, 33Vreg)

This block generates the internal reference voltages: 5 V and 3.3 V .

- External synchronization (SYNC)

Determines the switching frequency, based on the external pulse applied.

- Over current protection (OCP)

Over current protection is activated when the VCCCL-CL voltage reaches or exceeds 90 mV . When over current protection is active, Duty is low, and output voltage also decreases. When LOFF=L, the output voltage has fallen to 70% or below and output is latched OFF. The OFF latch mode ends when the latch is set to STB, EN.

- Sequence control (Sequence DET)

Compares FB voltage with reference voltage (0.56 V) and outputs the result as DET.

- Protection circuits (UVLO/TSD)

The UVLO lock out function is activated when VREG falls to about 2.8 V , while TSD turns outputs OFF when the chip temperature reaches or exceeds $150^{\circ} \mathrm{C}$. Output is restored when temperature falls back below the threshold value.

Fig-16A (Step-Down: Cout=OS Capacitor)

There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.

Fig-16B (Step-Down: Cout=Ceramic Capacitor)

There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.

Fig-16C (Step-Down: Low Input Voltage)

There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.

Fig-16D (Step-Up : and Step-Up-Down)

There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
(1) Setting the output L value

Fig-17

Fig-18
Output ripple current

The coil value significantly influences the output ripple current. Thus, as seen in equation (5), the larger the coil, and the higher the switching frequency, the lower the drop in ripple current.

$$
\Delta \mathrm{IL}=\frac{(\mathrm{VCC}-\mathrm{VOUT}) \times \mathrm{VOUT}}{\mathrm{~L} \times \mathrm{VCC} \times \mathrm{f}}[\mathrm{~A}] \cdots(5)
$$

The optimal output ripple current setting is 30% of maximum current. $\Delta \mathrm{IL}=0.3 \times$ IOUTmax. $[\mathrm{A}] \cdot \cdots(6)$

$$
\mathrm{L}=\frac{(\mathrm{VCC}-\mathrm{VOUT}) \times \mathrm{VOUT}}{\Delta \mathrm{IL} \times \mathrm{VCC} \times f}[\mathrm{H}] \cdots(7)
$$

($\Delta \mathrm{IL}$: output ripple current f : switching frequency)
※Outputting a current in excess of the coil current rating will cause magnetic saturation of the coil and decrease efficiency.

Please establish sufficient margin to ensure that peak current does not exceed the coil current rating.
※Use low resistance (DCR, ACR) coils to minimize coil loss and increase efficiency.
(2) Setting the output capacitor Co value

Select the output capacitor with the highest value for ripple voltage (VPP) tolerance and maximum drop voltage (at rapid load change). The following equation is used to determine the output ripple voltage.

Be sure to keep the output Co setting within the allowable ripple voltage range.
※Please allow sufficient output voltage margin in establishing the capacitor rating. Note that low-ESR capacitors enable lower output ripple voltage.
Also, to meet the requirement for setting the output startup time parameter within the soft start time range, please factor in the conditions described in the capacitance equation (9) for output capacitors, below.

$$
\begin{equation*}
\text { Co } \leqq \frac{\text { TSS } \times(\text { Limit }- \text { IOUT })}{\text { VOUT }} \quad \cdots \quad \text { (9) } \quad \text { Tss : soft start time } \tag{9}
\end{equation*}
$$

Note: less than optimal capacitance values may cause problems at startup.
(3) Input capacitor selection

Fig-19
Input capacitor

The input capacitor serves to lower the output impedance of the power source connected to the input pin (VCC). Increased power supply output impedance can cause input voltage (VCC) instability, and may negatively impact oscillation and ripple rejection characteristics. Therefore, be certain to establish an input capacitor in close proximity to the VCC and GND pins. Select a low-ESR capacitor with the required ripple current capacity and the capability to withstand temperature changes without wide tolerance fluctuations. The ripple current IRMSS is determined using equation (10).

$$
\text { IRMS }=\text { IOUT } \times \frac{\sqrt{\text { VOUT }(V C C-V O U T)}}{V C C} \quad[A] \cdots(10)
$$

Also, be certain to ascertain the operating temperature, load range and MOSFET conditions for the application in which the capacitor will be used, since capacitor performance is heavily dependent on the application's input power characteristics, substrate wiring and MOSFET gate drain capacity.
(4) Feedback resistor design

Please refer to the following equation in determining the proper feedback resistance. The recommended setting is in a range between $10 \mathrm{k} \Omega$ and $330 \mathrm{k} \Omega$. Resistance less than $10 \mathrm{k} \Omega$ risks decreased power efficiency, while setting the resistance value higher than $330 \mathrm{k} \Omega$ will result in an internal error amp input bias current of 0.2 uA increasing the offset voltage.

Fig-20
(5) Setting switching frequency

The triangular wave switching frequency can be set by connecting a resistor to the RT 15(33) pin. The RT sets the frequency by adjusting the charge/discharge current in relation to the internal capacitor. Refer to the figure below in determining proper RT resistance, noting that the recommended resistance setting is between $50 \mathrm{k} \Omega$ and $130 \mathrm{k} \Omega$. Settings outside this range may render the switching function inoperable, and proper operation of the controller overall cannot be guaranteed when unsupported resistance values are used.

Fig-21 RT vs. switching frequency
(6) Setting the soft start delay

The soft start function is necessary to prevent an inrush of coil current and output voltage overshoot at startup. The figure below shows the relation between soft start delay time and capacitance, which can be calculated using equation (12) at right.

Fig-22 SS capacitance vs. delay time

Recommended capacitance values are between 0.01 uF and $0.1 u F$. Capacitance lower than $0.01 u F$ may generate output overshoots. Please use high accuracy components (such as X5R) when implementing sequential startups involving other power sources. Be sure to test the actual devices and applications to be used, since the soft start time varies, depending on input voltage, output voltage and capacitance, coils and other characteristics.
(7) Setting over current detection values

The current limit value (ILimit) is determined by the resistance of the RCL established between CL and VCCCL.

Fig-23

Fig-24

There are 2 current limit function (ON/OFF control type and OFF latch type) toggled by LOFF pin.

- LOFF=L ($0<L O F F<1 \mathrm{~V}$): Off Latch Type Current Limit

The output becomes OFF and latched when SS=H and, current limit operation, and the output voltage is less than or equal to 70% of Vo. The OFF latch is deactivated by re-inputting EN signal or VCC control input (switch OFF and ON once more).

- LOFF=H (1<LOFF<VREG5): ON/OFF Control Type Current Limit

When the current goes beyond the threshold value, the current can be limited by reducing the ON Duty Cycle. When the load goes back to the normal operation, the output voltage also becomes back on to the specific level.

(8) Method for determining phase compensation

Conditions for application stability
Feedback stability conditions are as follows:

- When gain is $1(0 \mathrm{~dB})$ and phase shift is 150° or less (i.e., phase margin is at least 30°): a dual-output high-frequency step-down switching regulator is required
Additionally, in DC/DC applications, sampling is based on the switching frequency; therefore, overall GBW may be set at no more than $1 / 10$ the switching frequency. In summary, target characteristics for application stability are:
- Phase shift of 150° or less (i.e., phase margin of 30° or more) with gain of 1 (0 dB)
- GBW (i.e., gain OdB frequency) no more than $1 / 10$ the switching frequency.

Stability conditions mandate a relatively higher switching frequency, in order to limit GBW enough to increase response.
The key to achieving successful stabilization using phase compensation is to cancel the secondary phase margin/delay $\left(-180^{\circ}\right)$ generated by LC resonance, by employing a dual phase lead. In short, adding two phase leads stabilizes the application.
GBW (the frequency at gain 1) is determined by the phase compensation capacitor connected to the error amp. Thus, a larger capacitor will serve to lower GBW if desired.
(1) General use integrator (low-pass filter) (2) Integrator open loop characteristics

Fig-26

Fig-27
point (a) fa $=\frac{1}{2 \pi R C A} 1.25[\mathrm{~Hz}]$ point (b) 点 fa $=G B W \frac{1}{2 \pi R C} \quad[H z]$

The error amp is provided with phase compensation similar to that depicted in figures (1) and (2) above and thus serves as the system's low-pass filter.
In DC/DC converter applications, R is established parallel to the feedback resistance.

When electrolytic or other high-ESR output capacitors are used:
Phase compensation is relatively simple for applications employing high-ESR output capacitors (on the order of several Ω). In DC/DC converter applications, where LC resonance circuits are always incorporated, the phase margin at these locations is -180°. However, wherever ESR is present, a 90° phase lead is generated, limiting the net phase margin to -90° in the presence of ESR. Since the desired phase margin is in a range less than 150°, this is a highly advantageous approach in terms of the phase margin. However, it also has the drawback of increasing output voltage ripple components.
(3) LC resonance circuit

Fig-28
$\mathrm{fr}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}[\mathrm{Hz}]$
Resonance point phase margin -180°
(4) ESR connected

Fig-29

$$
\begin{aligned}
& \mathrm{fr}=\frac{\text { resonance point } 1}{2 \pi \sqrt{\mathrm{LC}}}[\mathrm{~Hz}]: \\
& \mathrm{fESR}=\frac{1}{2 \pi \operatorname{RESRC}}[\mathrm{~Hz}]: \text { Zero } \\
& -90^{\circ}: \text { Pole }
\end{aligned}
$$

$[\mathrm{Hz}]$: Resonance Point

Since ESR changes the phase characteristics, only one phase lead need be provided for high-ESR applications. Please choose one of the following methods to add the phase lead.
(5) Add C to feedback resistor

Fig-30

$$
\text { Phase lead } f z=\frac{1}{2 \pi \mathrm{C} 1 \mathrm{R} 1}[\mathrm{~Hz}]
$$

(6) Add R3 to aggregator

Fig-31

$$
\text { Phase lead } \mathrm{fz}=\frac{1}{2 \pi \mathrm{C} 2 \mathrm{R} 3} \quad[\mathrm{~Hz}]
$$

Set the phase lead frequency close to the LC resonance frequency in order to cancel the LC resonance.
When using ceramic, OS-CON, or other low-ESR capacitors for the output capacitor:
Where low-ESR (on the order of tens of $m \Omega$) output capacitors are employed, a two phase-lead insertion scheme is required, but this is different from the approach described in figure (3)~(6), since in this case the LC resonance gives rise to a 180° phase margin/delay. Here, a phase compensation method such as that shown in figure (7) below can be implemented.
(7) Phase compensation provided by secondary (dual) phase lead

$$
\begin{aligned}
& \text { Phase lead } \mathrm{fz} 1=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1} \quad[\mathrm{~Hz}] \\
& \text { Phase lead } \mathrm{fz} 2=\frac{1}{2 \pi \mathrm{R} 3 \mathrm{C} 2} \quad[\mathrm{~Hz}]
\end{aligned}
$$

LC resonance frequency fr $=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}[\mathrm{Hz}]$
Fig-32
Once the phase-lead frequency is determined, it should be set close to the LC resonance frequency. This technique simplifies the phase topology of the DCDC Converter. Therefore, it might need a certain amount of trial-and-error process. There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics. Please verify and confirm using practical applications.

FET uses Nch MOS

- Vds $>$ Vcc
- VGSM1>BOOT-SW interval voltage
- VGSm2 > VREG5
- Allowable current $>$ voltage current + ripple current ※Should be at least the over current protection value ※Select a low ON-resistance MOSFET for highest efficiency

Fig-33
(10) Schottky barrier diode selection

Fig-34

- Reverse voltage VR>Vcc
- Allowable current > voltage current + ripple current ※Should be at least the over current protection value ※Select a low forward voltage, fast recovery diode for highest efficiency
- The shoot-through may happen when the input parasitic capacitance of FET is extremely big or the Duty ratio is less than or equal to 10%. Less than or equal to 1000 pF input parasitic capacitance is recommended. Please confirm operation on the actual application since this character is affected by PCB layout and components.
- Timing chart

With EN1, 2 at "H" level, when EN1 goes "L", With EN1, 2 at "H" level, when EN1 goes "L,
Vo1 turns OFF, but Vo2 output continues.

When EN1 stays " H " and EN2 returns to " H ", DET1 is in When EN1 stays "H" and EN2 returns to "H, Det
open state; thus SS2 is asserted, and Vo2 output starts. If Vo2 is 76% of the voltage setting or higher, DET2 goes open and SS1 is asserted, starting Vo1 output.

Fig-35

$\begin{array}{lll} \hline \text { 1(13), } & 27(48) \text { PIN (SW1, SW2) } \\ 29(2), & 35(11) \text { PIN (BOOT2, BOOT1) } \\ 28(1), & 36(15) \text { PIN (OUTH1, OUTH2) } \end{array}$	2(14), 26(47)PIN (DGND1, DGND2) 3(15), 25(46)PIN (OUTL1, OUTL2) 24(44) VREG5 / 4(17)VREG5A	14(31)PIN (LOFF)
16(34)PIN (SYNC)	6(21), 21(39)PIN (FB1, FB2)	8(23), 19(37)PIN (SS1, SS2)
$\begin{aligned} & \text { 10(25), } 11(26), 12(27) \mathrm{PIN} \\ & (\text { STB, EN1, EN2) } \end{aligned}$	9(24), 18(36)PIN (DET1, DET2)	15(33)PIN (RT)
17(35)PIN (LLM)	30(3), 34(10)PIN (CL2, CL1) 31(5), 33(8)PIN (VCCCL2, VCCCL1)	7(22), 20(38)PIN (COMP1, COMP2)
22(41)PIN (EXTV, CC) 24(44)PIN (VREG5)	5(19)PIN (VREG33)	4(17)DIN (VREG5A)

-Operation notes

1) Absolute maximum ratings

Exceeding the absolute maximum ratings for supply voltage, operating temperature or other parameters can damage or destroy the IC. When this occurs, it is impossible to identify the source of the damage as a short circuit, open circuit, etc. Therefore, if any special mode is being considered with values expected to exceed absolute maximum ratings, consider taking physical safety measures to protect the circuits, such as adding fuses.
2) GND electric potential

Keep the GND terminal potential at the lowest (minimum) potential under any operating condition.
3) Thermal design

Be sure that the thermal design allows sufficient margin for power dissipation (Pd) under actual operating conditions.
4) Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed surface boards. Connection errors may result in damage or destruction of the IC. The IC can also be damaged when foreign substances short output pins together, or cause shorts between the power supply and GND.
5) Operation in strong electromagnetic fields

Use caution when operating in the presence of strong electromagnetic fields, as this may cause the IC to malfunction.
6) Testing on application boards

Connecting a capacitor to a low impedance pin for testing on an application board may subject the IC to stress. Be sure to discharge the capacitors after every test process or step. Always turn the IC power supply off before connecting it to or removing it from any of the apparatus used during the testing process. In addition, ground the IC during all steps in the assembly process, and take similar antistatic precautions when transporting or storing the IC.
7) The output FET

The shoot-through may happen when the input parasitic capacitance of FET is extremely big or the Duty ratio is less than or equal to 10%. Less than or equal to 1000 pF input parasitic capacitance is recommended. Please confirm operation on the actual application since this character is affected by PCB layout and components.
8) This monolithic IC contains $\mathrm{P}+$ isolation and P substrate layers between adjacent elements in order to keep them isolated. $P-N$ junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. Relations between each potential may form as shown in the example below, where a resistor and transistor are connected to a pin:

O With the resistor, when GND> Pin A, and with the transistor (NPN), when GND > Pin B:
The P-N junction operates as a parasitic diode
O With the transistor (NPN), when GND> Pin B:
The P-N junction operates as a parasitic transistor by interacting with the N layers of elements in proximity to the parasitic diode described above.

Parasitic diodes inevitably occur in the structure of the IC. Their operation can result in mutual interference between circuits, and can cause malfunctions, and, in turn, physical damage or destruction. Therefore, do not employ any of the methods under which parasitic diodes can operate, such as applying a voltage to an input pin lower than the (P substrate) GND.

Resistor

Fig-37

Parasitic element or transistor Fig-38
(PINB)

Fig-39

Parasitic element

Fig-40
9) GND wiring pattern

When both a small-signal GND and high current GND are present, single-point grounding (at the set standard point) is recommended, in order to separate the small-signal and high current patterns, and to be sure voltage changes stemming from the wiring resistance and high current do not cause any voltage change in the small-signal GND. In the same way, care must be taken to avoid wiring pattern fluctuations in any connected external component GND.
10) In some application and process testing, Vcc and pin potential may be reversed, possibly causing internal circuit or element damage. For example, when the external capacitor is charged, the electric charge can cause a Vcc short circuit to the GND. In order to avoid these problems, limiting output pin capacitance to $100 \mu \mathrm{~F}$ or less and inserting a Vcc series countercurrent prevention diode or bypass diode between the various pins and the Vcc is recommended.

11) Thermal shutdown (TSD)

This IC is provided with a built-in thermal shutdown (TSD) circuit, which is designed to prevent thermal damage to or destruction of the IC. Normal operation should be within the power dissipation parameter, but if the IC should run beyond allowable Pd for a continued period, junction temperature (Tj) will rise, thus activating the TSD circuit, and turning all output pins OFF. When Tj again falls below the TSD threshold, circuits are automatically restored to normal operation. Note that the TSD circuit is only asserted beyond the absolute maximum rating. Therefore, under no circumstances should the TSD be used in set design or for any purpose other than protecting the IC against overheating
12) The SW pin

When the SW pin is connected in an application, its coil counter-electromotive force may give rise to a single electric potential. When setting up the application, make sure that the SW pin never exceeds the absolute maximum value. Connecting a resistor of several Ω will reduce the electric potential. (See Fig. 43)

Fig-42
13) Dropout operation

When input voltage falls below approximately output voltage / 0.9 (varying depending on operating frequency) the ON interval on the OUTL side MOS is lost, making boost applications and wrap operation impossible. If a small differential between input and output voltage is envisioned for a prospective application, connect the load such that the SW voltage drops to the GND level. Managing this load requires discharging the SW line capacitance (SW pin capacitance: approx. 500 pF ; OUTL side MOS D-S capacitance; Schottky capacitance). Supported loads can be calculated using the equation below.

Note that SW line capacitance is lower with smaller loads, and more stable operation is attained when low voltage bias circuits are configured as in the example below (Fig. 44). However, the degree to which line capacitance is reduced or operational stability is attained will vary depending on the board layout and components. Therefore, be certain to confirm the effectiveness of these design factors in actual operation before entering mass production.

Fig-43

Power dissipation vs. temperature characteristics

(1): Stand-alone IC
(2) : Mounted on Rohm standard board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass-epoxy board)

(1): Stand-alone IC
(2) : Mounted on Rohm standard board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass-epoxy board)

Part order number

ROHM part code

Type/No.

Package type
KV : VQFP48C EKN : HQFN36V

HQFN36V

<Tape and Reel information>

| Tape | Embossed carrier tape(with dry pack) |
| :--- | :--- | :--- | :--- |
| Quantity | 2500 pcs |
| Direction
 of feed | E2
 (The direction is the 1pin of product is at the upper left when you hold
 reel on the left hand and you pull out the tape on the right hand) |

VQFP48C

- Description

BD9775FV,BD9011EKN/KV is Switching Controller with synchronous rectification(BD9775FV is 1channel synchronous rectification, BD9011EKN/KV is 2channel synchronous rectification.) and wide input range. It can contribute to ecological design(lower power consumption) for most of electronic equipments.

BD9775FV (1channel synchronous rectification configuration)

- Features (BD9775FV)

1) 2channel Step-Down DC/DC FET driver
2) Synchronous rectification for channel 2
3) Able to synchronize to an external clock signal
4) Over Current Protection (OCP) by monitoring VDS of P channel FET
5) Short Circuit Protection (SCP) by delay time and latch method
6) Under Voltage Lock Out (UVLO)
7) Thermal Shut Down (TSD)
8) Package : SSOP-B28
-Applications (BD9775FV)
Car navigation system, Car Audio, Display, Flat TV

- Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)(BD9775FV)

Parameter	Symbol	Limits	Units
Supply Voltage (VCC to GND)	Vcc	36	V
VREF to GND Voltage	Vref	7	V
VREGA to GND Voltage	Vrega	7	V
VREGB to VCC Voltage	Vregb	7	V
OUT1, OUT2H to VCC Voltage	Vouth	7	V
OUT2L to GND Voltage	Voutl	7	V
Power Dissipation	Pd	$640(* 1)$	mW
Operating Temperature Range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	Tjmax	+125	${ }^{\circ} \mathrm{C}$

(*1) Without heat sink, reduce to 6.4 mW when $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or above
Pd is 850 mW mounted on $70 \times 70 \times 1.6 \mathrm{~mm}$, and reduce to $8.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
－Recommended operating conditions（ $\mathrm{Ta}=-25$ to $+75^{\circ} \mathrm{C}$ ）（BD9775FV）

Parameter	Symbol	Limits			Units
		MIN	TYP	MAX	
Supply Voltage		6.0	-	30.0	V
Oscillating Frequency	f osc	30	100	300	KHz
Timing Resistance	RT	10	27	56	$\mathrm{~K} \Omega$
Timing Capacitance	CT	100	470	4700	pF

－Electrical characteristics（ $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=13.2 \mathrm{~V}, \mathrm{fosc}=100 \mathrm{kHz}, \mathrm{CTL} 1=3 \mathrm{~V}, \mathrm{CTL} 2=3 \mathrm{~V}$ ）（BD9775FV）

Parameter	Symbol	Limits			Unit	Condition
		Min．	Typ．	Max．		
【Whole Device】						
Stand－by Current	Iccst	－	－	5	$\mu \mathrm{A}$	CTL1，CTL2＝0V
Circuit Current	Icc	2.5	4.2	7	mA	FB1，FB2＝0V
【Reference Voltage】						
VREF Output Voltage	Vref	2.97	3.00	3.03	V	$\mathrm{lo}=-1 \mathrm{~mA}$
Line Regulation	DVIi	－	－	10	mV	$\mathrm{Vcc}=7$ to $18 \mathrm{~V}, \mathrm{lo}=-1 \mathrm{~mA}$
Load Regulation	DVIo	－	－	10	mV	$\mathrm{lo}=-0.1 \mathrm{~mA}$ to -2 mA
Short Output Current	los	－60	－22	－5	mA	
【Internal Voltage Regulator】						
VREGA Output Voltage	Vrega	4.5	5.0	5.5	V	Switching with COUT＝5000pF
VREGB Output Voltage	Vregb	VCC－5．5	VCC－5．0	VCC－4．5	V	Switching with COUT $=5000 \mathrm{pF}$
VREGB Dropout Voltage	Vdregb	－	1.8	2.2	V	VREGB to GND Voltage
【Oscillator】						
Oscillating Frequency	fosc	90	100	110	kHz	$\mathrm{RT}=27 \mathrm{k} \Omega, \mathrm{CT}=470 \mathrm{pF}$
Frequency Tolerance	Dfosc	－	－	2	\％	$\mathrm{Vcc}=7$ to 18 V
【Synchronized Frequency】						
Synchronized Frequency	f osc2	－	120	－	kHz	FIN＝120kHz
FIN Threshold Voltage	Vthfin	1.2	1.4	1.6	V	
FIN Input Current	IFIN	－1	－	1	$\mu \mathrm{A}$	VFIN＝1．4V
【Error Amplifier】						
Threshold Voltage	Vthea	0.98	1.00	1.02	V	
INV Input Bias Current	Ibias	－1	－	1	$\mu \mathrm{A}$	
Voltage Gain	Av	－	70	－	dB	DC
Band Width	Bw	－	2.0	－	MHz	$\mathrm{Av}=0 \mathrm{~dB}$
Maximum Output Voltage	Vfbh	2.2	2.4	2.6	V	$\mathrm{INV}=0.5 \mathrm{~V}$
Minimum Output Voltage	Vfbl	－	－	0.1	V	$\mathrm{INV}=1.5 \mathrm{~V}$
Output Sink Current	Isink	0.5	2	5.2	mA	FB1，2 Terminal
Output Source Current	Isource1	－170	－110	－70	$\mu \mathrm{A}$	FB1 Terminal
	Isource2	－200	－130	－85	$\mu \mathrm{A}$	FB2 Terminal

Parameter	Symbol	Limits			Unit	Condition
		Min．	Typ．	Max．		
【PWM Comparator】						
Threshold Voltage at 0\％	Vth0	0.88	0.98	1.08	V	FB Voltage
Threshold Voltage at 100%	Vth100	1.88	1.98	2.08	V	FB Voltage
DTC Input Bias Current	Idtc	－1	－	1	$\mu \mathrm{A}$	
【FET Driver】						
Sink Current	Isink	20	36	58	mA	$\mathrm{VDS}=0.4 \mathrm{~V}$
Source Current	Isource	－510	－320	－180	mA	VDS $=0.4 \mathrm{~V}$
ON Resistance	RonN	7.0	11.0	17.8	Ω	OUT1，2H，2L：L
	RonP	0.7	1.4	2.2	Ω	OUT1，2H，2L：H
Rise Time	Tr	－	20	－	nsec	Switching with COUT $=5000 \mathrm{pF}$
Fall Time	Tf	－	100	－	nsec	Switching with COUT $=5000 \mathrm{pF}$
Driver＇s Duty Cycle of Synchronous Rectification	Δ Duty	42	45	48	\％	RSYNC $=30 \mathrm{~K} \Omega$ ， 50% of main driver＇s duty cycle
SYNC Terminal Voltage	Vsync	1.45	1.55	1.65	V	Rsync $=30 \mathrm{~K} \Omega$ ， $\mathrm{FB}=1.5 \mathrm{~V}$
【Over Current Protection（OCP）】						
VS Threshold Voltage	Vths	VCC－0．24	VCC－0．21	VCC－0．18	V	RCL $=21 \mathrm{k} \Omega$ ，the output tern off after detected 8 cycle
VS Input Current	IVSH	－1	－	1	$\mu \mathrm{A}$	VS1，VS2＝PBU
	IVSL	－1	－	1	$\mu \mathrm{A}$	VS1，VS2＝0V
CL Input Current	Icl	9	10	11	$\mu \mathrm{A}$	
【Stand－by】						
Threshold Voltage	Vctl	1.0	1.5	2.0	V	
CL Input Current	Ict｜	6	15	30	$\mu \mathrm{A}$	CTL1，CTL2 $=3 \mathrm{~V}$
【Short Circuit Protection（SCP）】						
Timer Start Voltage	Vtime	0.6	0.7	0.8	V	INV Voltage
Threshold Voltage	Vthscp	1.92	2.00	2.08	V	SCP Voltage
Stand－by Voltage	Vstscp	－	10	100	mV	SCP Voltage
Source current	Isoscp	－4．0	－2．5	－1．5	$\mu \mathrm{A}$	$\mathrm{SCP}=1.0 \mathrm{~V}$
【Under Voltage Lock Out（UVLO）】						
Threshold Voltage	Vuvlo	5.6	5.7	5.8	V	Vcc sweep down
Hysteresis Voltage Range	DVuvlo	0.05	0.1	0.15	V	

- FUNCTION EXPLANATION (BD9775FV)

1.DC/DC Converter

- Reference Voltage

Stable voltage of compensated temperature, is generated from the power supply voltage (VCC). The reference voltage is 3.0V, the accuracy is $\pm 1 \%$. Place a capacitor with low ESR (several decades $m \Omega$) between VREF and GND.

- Internal Regulator A (VREGA)

5 V is generated the power supply voltage. The voltage is for the driver of the synchronous rectification's MOSFET. Place a capacitor with low ESR (several decades $m \Omega$) between VREGA and PGND.

- Internal regulator B (VREGB)
(VCC-5V) is generated from the power supply voltage. The voltage is for the driver of the main MOSFET switch. Place a capacitor with low ESR (several decades $m \Omega$) between VREGB and PVCC.
- Oscillator

Placing a resistor and a capacitor to RT and CT, respectively, generates two triangle waves for both cannels, and each wave is opposite phase. The waves are input to the PWM comparators for CH 1 and CH 2 . Also, the oscillating frequency can be slightly adjusted (less than 20\%) by putting external clock pulse into Fin pin, which is higher frequency than the fixed one.

- Error Amplifier

It amplifies the difference, between the establish output voltage and the actual output one detected at INV. And amplified voltage comes out from FB. The comparing voltage is 1.0 V and the accuracy is $\pm 2 \%$. The phase can be compensated externally by placing a resistor and a capacitor between INV and FB.

- PWM Comparator

It converts the output voltage from error amplifier into PWM waveform, then output to MOSFET driver.

- MOSFET Driver

The main drivers (OUT1, OUT2H) are for P-channel MOSFETs, and the driver (OUT2L) for synchronous rectification is for N -channel MOSFET. The values of output voltage are clamp to VREGB, VREGA, respectively. All drivers' output configurations are push-pull type. In addition, the output current capability is 36 mA for the sink current and 320 mA (Vds=0.4V) for the source current.

2.Channel Control

Each output can be individually turned on or off with CTL1 and CTL2. When the CTL is "H" (more than 1.5 V), it becomes turned on.

3.Protection

- Over Current Protection (OCP)

When detected over current (detecting drop voltage of the main MOSFET's ON resistance), the MOSFET switch becomes turned off, and the energy on DTC pin is discharged. After discharged, the output restarts automatically. The level of the OCP detection threshold can be set by the resistance, which is connected between VCC and CL.

- Short Circuit Protection (SCP)

When either output goes down and the voltage on INV pin gets lower than 0.7 V , a capacitor placed on SCP is started to charge.
When the SCP pin becomes more than 2.0 V , the main MOSFET switches of both outputs are turned off; then, the outputs are latched. While they are latched, the IC can be reset by restarting VCC or CTL, or discharging SCP.

- Under Voltage Lock Out (UVLO)

Due to avoiding malfunctions when the IC is started up or the power supply voltage is rapidly disconnected, the main MOSFET switches become off and DTC is discharged when the supply voltage is less than 5.7 V . Also, when the output is latched because of SCP function, the latch becomes reset. Due to preventing malfunctions in the case the power supply voltage fluctuate at near UVLO threshold, there is 0.1 V hysteresis between the detection and reset voltage of UVLO threshold.

- Thermal Shut Down (TSD)

Due to preventing breakdown of the IC by heating up, the main MOSFET switches become off and DTC pin is discharged by detecting over temperature of the chip. Due to preventing malfunctions in the case temperature fluctuate at near TSD threshold, there is hysteresis between TSD on and off.

-SETTING UP INFOMATION (BD9775FV)

1)Simultaneously OFF Duty of MOSFETs for Synchronous Rectification

The simultaneously OFF duty of both main MOSFET switch and synchronous rectification MOSFET is determined by resistance (Rsync) between SYNC and GND. See Fig. 4.
In Synchronous Rectification, insert RFB2-GND (RFB2-GND $\fallingdotseq 3 \times$ Rsync) between FB2 and GND, because it is possible to reduce overshoot(sea fig.2). RFB2-GND decide following formula.

Fig. 2

- Resistance at FB2-GND setup condition

$\frac{2.08}{\frac{0.4908}{\operatorname{Rsync}(\mathrm{MAX})}+80.7 \times 10^{-6}}<\mathrm{R}_{\text {FB2-GND }}<3 x \operatorname{Rsync}(\mathrm{MIN})$
※Rsync(MAX) \cdots MAX dispersion range at Rsync Rsync(MIN) \cdots MIN dispersion range at Rsync

Short SYNC to VREF if the synchronous rectification function is not needed.

Without Synchronous Rectification (Don't insert R $\mathrm{R}_{\text {FB2-GND) }}$
2) Oscillator Synchronization by External Pulse Signal

At the operation the oscillator is externally synchronized, input the synchronization signal into Fin in addition to connect a resistor and a capacitor at RT and CT, respectively.
Input the external clock pulse on Fin, which is higher frequency than the fixed one. However, the frequency variation should be less than 20\%.
Also, the duty cycle of the pulse should be set from 10% to 90%.

CT Waveform during Synchronized with External Pulse

Short Fin to GND if the function of external synchronization is not needed.

Without Synchronization Signal
3)Setting the Over Current Threshold Level

The OCP detection level (locp) is determined by the ON resistance (R_{ON}) of the main MOSFET switch and the resistance (Rcl) which is placed between CL and VCC.

$$
\text { locp }=\frac{\mathrm{Rcl}}{\mathrm{R}_{\mathrm{ON}}} \times 10^{-5}[\mathrm{~A}] \quad \text { (typ.) }
$$

To prevent a malfunction caused by noise, place a capacitor (Ccl) parallel to Rcl. If OCP function is not needed, short VS to VCC, and short CL to GND.

With OCP

Without OCP
4)Setting the Time for Short Circuit Protection

The time (tscp) from output short to latch activation is determined by the capacitor, Cscp, connected SCP pin.

$$
\operatorname{tscp}=7.96 \times 10^{5} \times \operatorname{Cscp} \quad[\mathrm{sec}] \quad \text { (typ.) }
$$

Short SCP to GND if SCP function is not being used.

Without SCP

5)Single Channel Operation

This device can be used as a single output. The connection is as follows;

Single Channel Operation

6)Setting the Oscillating Frequency

The oscillating frequency can be set by selecting the timing resistor (RRT) and the timing capacitor (CCT).

Ocsillating Frequency vs. Timing Capacitance (CCT)

Fig. 3

Ocsillating Frequency vs. Timing Capacitance (RRT)

Fig. 4

- Timing Chart (BD9775FV)

- Output ON/OFF, Minimum Input (UVLO)

Fig. 5

- Over Current Protection, Short Circuit Protection, Thermal Shut Down

Fig. 6

- I/O EQUIVALENT CIRCUIT (BD9775FV)

Fig. 7

Fig. 8

- Operation Notes (BD9775FV)

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC deterioration or damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered.
A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.
2) GND potential

Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND pin carry a voltage lower than or equal to the GND pin, including during actual transient phenomena.
3) Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
4) Inter-pin shorts and mounting errors

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC.
Shorts between output pins or between output pins and the power supply and GND pin caused by the presence of a foreign object may result in damage to the IC.
5) Operation in a strong electromagnetic field Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
6) Thermal shutdown circuit (TSD circuit)

This IC incorporates a built-in thermal shutdown circuit (TSD circuit). The TSD circuit is designed only to shut the IC off to prevent runaway thermal operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of the thermal shutdown circuit is assumed.
7) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.
8) Common impedance

Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize ripple as much as possible (by making wiring as short and thick as possible or rejecting ripple by incorporating inductance and capacitance).
9) Applications with modes that reverse VCC and pin potentials may cause damage to internal IC circuits.
For example, such damage might occur when VCC is shorted with the GND pin while an external capacitor is charged.
It is recommended to insert a diode for preventing back current flow in series with VCC or bypass diodes between VCC and each pin.

10) Timing resistor and capacitor

Timing resistor(capacitor) connected between $\mathrm{RT}(\mathrm{CT})$ and GND, has to be placed near RT(CT) terminal 3pin(4pin). And pattern has to be short enough.
11) The Dead time input voltage has to be set more than 1.1 V .

Also, the resistance between DTC and VREF is used more than $30 \mathrm{k} \Omega$ to work OCP function reliably.
12) The energy on DTC1 (8pin) and DTC2 (9pin) is discharged when CTL1 (12pin) and CTL2 (13pin) are OFF, respectively, or VCC (14pin) is OFF (UVLO activation). However, it is considerable to occur overshoot when CTL and VCC are turned on with remaining more than 1 V on the DTC.
13) If Gate capacitance of P-channel MOSFET or resistance placed on Gate is large, and the time from beginning of Gate switching to the end of Drain's (tsw), is long, it may not start up due to the OCP malfunction.
To avoid it, select MOSFET or adjust resistance as tsw becomes less than 270nsec.

Fig. 10
14) IC pin input

This monolithic IC contains P+ isolation and PCB layers between adjacent elements in order to keep them isolated. P / N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements. For example, when a resistor and transistor are connected to pins as shown in following chart, Othe P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).
OSimilarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other adjacent elements to operate as a parasitic NPN transistor.
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such as by the application of voltages lower than the GND (PCB) voltage to input and output pins.

Fig. 11

Fig. 12

- Part order number

ROHM Part
Code

Type/No.

Package type

Tape and Reel Information

SSOP-B28

SSOP-B28

<Dimension>

(Unit:mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^1]
[^0]: *1 Regardless of the listed rating, do not exceed Pd in any circumstances.
 *2 Mounted on a $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ glass-epoxy board. De-rated at $7.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (HQFN36V) or $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (VQFP48C) above $25^{\circ} \mathrm{C}$.

[^1]: Copyright © 2008 ROHM CO.,LTD.
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121
 FAX : +81-75-315-0172

